A Randomized Coordinate Descent Method with Volume Sampling
نویسندگان
چکیده
منابع مشابه
Stochastic Dual Coordinate Descent with Bandit Sampling
Coordinate descent methods minimize a cost function by updating a single decision variable (corresponding to one coordinate) at a time. Ideally, one would update the decision variable that yields the largest marginal decrease in the cost function. However, finding this coordinate would require checking all of them, which is not computationally practical. We instead propose a new adaptive method...
متن کاملWhen Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent
Coordinate descent (CD) method is a classical optimization algorithm that has seen a revival of interest because of its competitive performance in machine learning applications. A number of recent papers provided convergence rate estimates for their deterministic (cyclic) and randomized variants that differ in the selection of update coordinates. These estimates suggest randomized coordinate de...
متن کاملAccelerated Mini-batch Randomized Block Coordinate Descent Method
We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting th...
متن کاملFaster Coordinate Descent via Adaptive Importance Sampling
Coordinate descent methods employ random partial updates of decision variables in order to solve huge-scale convex optimization problems. In this work, we introduce new adaptive rules for the random selection of their updates. By adaptive, we mean that our selection rules are based on the dual residual or the primal-dual gap estimates and can change at each iteration. We theoretically character...
متن کاملCoordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
We study the problem of minimizing the sum of a smooth convex function and a convex blockseparable regularizer and propose a new randomized coordinate descent method, which we call ALPHA. Our method at every iteration updates a random subset of coordinates, following an arbitrary distribution. No coordinate descent methods capable to handle an arbitrary sampling have been studied in the literat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2020
ISSN: 1052-6234,1095-7189
DOI: 10.1137/19m125532x