A Randomized Coordinate Descent Method with Volume Sampling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Dual Coordinate Descent with Bandit Sampling

Coordinate descent methods minimize a cost function by updating a single decision variable (corresponding to one coordinate) at a time. Ideally, one would update the decision variable that yields the largest marginal decrease in the cost function. However, finding this coordinate would require checking all of them, which is not computationally practical. We instead propose a new adaptive method...

متن کامل

When Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent

Coordinate descent (CD) method is a classical optimization algorithm that has seen a revival of interest because of its competitive performance in machine learning applications. A number of recent papers provided convergence rate estimates for their deterministic (cyclic) and randomized variants that differ in the selection of update coordinates. These estimates suggest randomized coordinate de...

متن کامل

Accelerated Mini-batch Randomized Block Coordinate Descent Method

We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting th...

متن کامل

Faster Coordinate Descent via Adaptive Importance Sampling

Coordinate descent methods employ random partial updates of decision variables in order to solve huge-scale convex optimization problems. In this work, we introduce new adaptive rules for the random selection of their updates. By adaptive, we mean that our selection rules are based on the dual residual or the primal-dual gap estimates and can change at each iteration. We theoretically character...

متن کامل

Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity

We study the problem of minimizing the sum of a smooth convex function and a convex blockseparable regularizer and propose a new randomized coordinate descent method, which we call ALPHA. Our method at every iteration updates a random subset of coordinates, following an arbitrary distribution. No coordinate descent methods capable to handle an arbitrary sampling have been studied in the literat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2020

ISSN: 1052-6234,1095-7189

DOI: 10.1137/19m125532x